The Neutrino-Dark Matter Connection

David McKeen
University of Washington
PPC 2015

Based on:
& others
Could neutrinos and DM really be connected?

Of course, neutrinos are dark matter!
Could neutrinos and DM really be connected?

Of course, neutrinos are dark matter!

\[
\Omega_\nu h^2 \sim 10^{-2} \left(\frac{m_\nu}{\text{eV}} \right)
\]
Could neutrinos and DM really be connected?

Of course, neutrinos are (some of the) dark matter!

$$\Omega_\nu h^2 \sim 10^{-2} \left(\frac{m_\nu}{\text{eV}} \right)$$
Could neutrinos and DM really be connected?

Of course, neutrinos are (some of the) dark matter! \[
\Omega_\nu h^2 \sim 10^{-2} \left(\frac{m_\nu}{\text{eV}} \right)
\]

But too light (and too hot) to be all of the dark matter...

(See talk by J. Hamann yesterday)
Of course, sterile neutrinos are dark matter!
Could neutrinos and DM really be connected?

Of course, sterile neutrinos are dark matter!
Could neutrinos and DM really be connected?

Of course, sterile neutrinos are dark matter!

(See talk by S. Horiuchi yesterday)
Outline

• Quick recap of DM & structure formation & the physics that sets the scales of DM halos

• Heard about other solutions yesterday, but could interactions between DM and neutrinos fix problems at small scales?

• What would an actual model that does this look like? What are its implications?
Why Dark Matter?

DISTRIBUTION OF DARK MATTER IN NGC 3198

\[v \propto \sqrt{\frac{M_{\text{enc}}(r)}{r}} \]

\[\Omega_d \sim 0.2 \]
\[\Omega_b \sim 0.04 \]

Goes w/o saying at this conference!
Structure Formation

We live in an expanding and cooling universe.

Perturbations on smaller scales enter the horizon earlier, when it was hotter.

⇒ hierarchical DM clustering:
small scale structures form earlier.

Roughly, gravity vs. pressure compete.

(See talk by S. Watson yesterday)
Acoustic Oscillations

Before DM is decoupled, it “feels” pressure due to relativistic fluid

\[
H_d^{-1} = a_d \eta_d, \quad \eta_d = \int_0^{t_d} \frac{dt}{a(t)}
\]

This damps structure on scales smaller than the horizon at decoupling

\[
M_{\text{ao}} = \rho \chi(T_d) \frac{4\pi}{3} (a_d \eta_d)^3 = 2 \times 10^8 M_\odot \left(\frac{g_{\text{eff}}(T_d)}{3.36} \right)^{-1/2} \left(\frac{T_d}{\text{keV}} \right)^{-3}
\]
Kinetic Decoupling

DM sitting in relativistic fluid (provides the pressure)

\[p_{DM} \sim \sqrt{m_{DM}T} \]

Change in DM momentum after \(N \) collisions \(O(1) \)

\[\Delta p_{\text{tot}} \sim \sqrt{NT} \sim p_{DM} \]
\[\Rightarrow N \sim \frac{m_{DM}}{T} \]

Equilibrium maintained so long as

\[\frac{n_r \sigma}{N} \sim \frac{T}{m_{DM}} n_r \sigma > H \]

Temperature at decoupling estimated:

\[\sigma = \frac{T^2}{\Lambda^4}, \quad H \propto \frac{T^2}{M_{\text{Pl}}} \Rightarrow T_d \sim \left(\frac{\Lambda^4 m_{\chi}}{M_{\text{Pl}}} \right)^{1/4} \]
After decoupling, DM free streams washing out structure on scales smaller than

$$\ell_{eq} = \pi a_{eq} \int_{t_d}^{t_{eq}} dt \frac{v_{phys}}{a(t)}, \quad v_{phys} = v/a(t)$$

$$M_{fs} = \rho_{\chi}(T_0) \frac{4\pi}{3} \ell_0^3$$

$$= 3 \times 10^5 M_\odot \left(\frac{g_{\text{eff}}(T_d)}{3.36} \right)^{-1/2} \left(\frac{m_\chi}{10 \text{ MeV}} \right)^{-3/2} \left(\frac{T_d}{\text{keV}} \right)^{-3/2} \left\{ 1 + \ln \left[\left(\frac{g_{\text{eff}}(T_d)}{3.36} \right) \left(\frac{T_d}{\text{keV}} \right) \right] / 6.0 \right\}^3.$$
Smallest DM Objects

Smallest possible DM halos have masses \(\sim \) larger of \(M_{ao} \) or \(M_{fs} \)

\[
\frac{M_{fs}}{M_{ao}} = 1.5 \times 10^{-3} \left(\frac{m_\chi}{10 \text{ MeV}} \right)^{-3/2} \left(\frac{T_d}{\text{keV}} \right)^{3/2} \left\{ 1 + \ln \left[\left(\frac{g_{\text{eff}}(T_d)}{3.36} \right) \left(\frac{T_d}{\text{keV}} \right) \right]/6.0 \right\}^3.
\]

For \(T_d \lesssim 100 \text{ keV} \left(\frac{m_\chi}{10 \text{ MeV}} \right) \)

\(M_{ao} \) dominates

\[
\Rightarrow M_{\text{cut}} = M_{ao} = 2 \times 10^8 M_\odot \left(\frac{g_{\text{eff}}(T_d)}{3.36} \right)^{-1/2} \left(\frac{T_d}{\text{keV}} \right)^{-3}
\]

Hooper et al., 0704.2558
Vanilla WIMP Scales

For a DM-SM scattering cross section of

\[\sigma \sim \frac{T^2}{\Lambda^4}, \quad \Lambda \sim 100 \text{ GeV} \]

the decoupling temperature is

\[T_d = \left(\frac{\Lambda^4 m_\chi}{M_{Pl}} \right)^{1/4} = 10 \text{ MeV} \left(\frac{\Lambda}{100 \text{ GeV}} \right) \left(\frac{m_\chi}{100 \text{ GeV}} \right)^{1/4} \]

This results in a cut off mass of \(M_{\text{cut}} \ll M_\odot \)

i.e. tiny!

What does the data say?
Large Scales Look Good

But what about smaller scales?

astro-ph/0310725

astro-ph/0604561
Missing Satellites

Compared to expectation, fewer small halos orbiting Milky Way-sized galaxy

Suggestive of a cut off $\sim 10^{7-9}$ M_\odot, much larger than WIMP case
“Too Big to Fail” & Core vs. Cusp

N-body simulations indicate that most massive MW satellites more massive than those we know, large enough to form stars

DM density profiles appear less cuspy than NFW

\[\rho_{\text{NFW}}(r) = \frac{\rho_H}{r/R_H (1 + r/R_H)^2} \]

(See talks by H.-B. Yu & S. Horiuchi)
Potential Resolutions

Could be fixed by baryonic effects
(Brooks, Governato, Pontzen, +)

DM could be “warm”
(See talk by S. Horiuchi)

DM could self-interact
(See talk by H.-B. Yu)

DM could stay in kinetic equilibrium with the plasma longer...
Coupling to Neutrinos?

Recall \(M_{ao} = 2 \times 10^8 M_\odot \left(\frac{T_d}{\text{keV}} \right)^{-3} \)

Neutrinos are another form of radiation

Want \(T_d \sim \text{keV} \)

So if \(\sigma \sim \frac{T^2}{\Lambda^4}, \ T_d \sim \left(\frac{\Lambda^4 m_\chi}{M_{Pl}} \right)^{1/4} \)

\[\Rightarrow \Lambda^4 m_\chi = (10 - 100 \text{ MeV})^5 \]

\[\sigma_{\text{ann}} \nu \gg 3 \times 10^{-26} \ \frac{\text{cm}^3}{\text{s}} \Rightarrow \text{Asymmetric DM} \]

What would a model of this look like?
Model Building

Safest to couple through the “neutrino portal”

Portals: low-dimensional gauge singlet operators connecting SM & “dark sector”, e.g.

neutrino:

\[\ell H \xrightarrow{} N \]

kinetic mixing:

\[F_{\mu\nu} \xrightarrow{} V_{\mu\nu} \]

Higgs:

\[H^\dagger H \xrightarrow{} S^2 \]
Model Building

Safest to couple through the “neutrino portal”

Portals: low-dimensional gauge singlet operators connecting SM & “dark sector”, e.g.

\[\nu \text{ masses} \]

\[\ell H \leftrightarrow N \]

\[F_{\mu\nu} \leftrightarrow V_{\mu\nu} \]

\[H^\dagger H \leftrightarrow S^2 \]
Model Building

Safest to couple through the “neutrino portal”

\[\ell H \chi \] is bad (DM decays) so use \[\frac{1}{\Lambda} \ell H \phi \chi \]

⇒ add “sterile” neutrino

\[\mathcal{L} \supset -\frac{m_{ij}}{v^2} (H \ell_i) (H \ell_j) - MN_1 N_2 - \chi_i N_1 H \ell_i - y_1 \phi^* N_1 \chi - y_2 \phi N_2 \chi + \text{h.c.} \]

lepton number conserved (for small ν masses & large mixing)

\[4 \times 4 \text{ mixing matrix: } \nu_i = U_{ij} \hat\nu_j \]

\[g \equiv y_2 \sqrt{|U_{e4}|^2 + |U_{\mu 4}|^2 + |U_{\tau 4}|^2} \]

\[\sigma_{\nu \chi} = \sum_{i=1}^{3} \sigma_{\nu_i \chi} = \frac{g^4}{8\pi} \frac{E_{\nu}^2}{(m_{\phi}^2 - m_{\chi}^2)^2} = 8 \times 10^{-38} \text{cm}^2 \left(\frac{g}{0.3} \right)^4 \left(\frac{E_{\nu}}{1 \text{ keV}} \right)^2 \left(\frac{35 \text{ MeV}}{\sqrt{m_{\phi}^2 - m_{\chi}^2}} \right)^4 \]
Model Building

3 light & 1 heavy neutrinos

Heavy neutrino is Dirac:

\[\hat{N} = \begin{pmatrix} \hat{\nu}_4 = c_\theta N_2 + s_\theta \nu_\tau \\ N_1^* \end{pmatrix} \]

decays invisibly (visible decays are \(G_F \) suppressed):

\[\Gamma_{\hat{N} \rightarrow \nu \chi \bar{\chi}} = \frac{(y_1^2 + y_2^2 c_\theta^2) m_4}{32\pi} \approx 3 \text{ MeV} \left(\frac{m_4}{300 \text{ MeV}} \right) \]

\[\Gamma_{\hat{N} \rightarrow \nu e^+ e^-} = \frac{s_\theta^2 G_F^2 m_4^5}{192\pi^3} \approx 5 \times 10^{-15} \text{ MeV} \left(\frac{s_\theta}{0.3} \right)^2 \left(\frac{m_4}{300 \text{ MeV}} \right)^5 \]
What parameter values do we need?

Require:

\[\Lambda \sim \frac{\sqrt{m_{\phi}^2 - m_{\chi}^2}}{\sqrt{|U_{e4}|^2 + |U_{\mu4}|^2 + |U_{\tau4}|^2}} \sim \mathcal{O}(10 \text{ s of MeV}) \]

\[\Rightarrow \sqrt{|U_{e4}|^2 + |U_{\mu4}|^2 + |U_{\tau4}|^2} \gtrsim 0.1 \]
What parameter values do we need?

Require:

\[\Lambda \sim \frac{\sqrt{m_\phi^2 - m_\chi^2}}{\sqrt{|U_{e4}|^2 + |U_{\mu4}|^2 + |U_{\tau4}|^2}} \sim \mathcal{O}(10\text{ s of MeV}) \]

\[\Rightarrow \sqrt{|U_{e4}|^2 + |U_{\mu4}|^2 + |U_{\tau4}|^2} \gtrsim 0.1 \]

\[\Rightarrow \text{couple to the } \nu_\tau \text{ neutrino} \]
Neutrino Oscillations

can decompose mixing matrix as

\[
U = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c_\theta & s_\theta \\
0 & 0 & -s_\theta & c_\theta \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & c_{23} & s_{23} & 0 \\
0 & -s_{23} & c_{23} & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13} & 0 \\
0 & 1 & 0 & 0 \\
-s_{13} & 0 & c_{13} & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 & 0 \\
-s_{12} & c_{12} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
c_{12}c_{13} & c_{13}s_{12} & s_{13} & 0 \\
-c_{23}s_{12} - c_{12}s_{13}s_{23} & c_{12}c_{23} - s_{12}s_{13}s_{23} & c_{13}s_{23} & 0 \\
-c_\theta \left(c_{12}c_{23}s_{13} - s_{12}s_{23}\right) & -c_\theta \left(c_{23}s_{12}s_{13} + c_{12}s_{23}\right) & c_\theta c_{13}s_{23} & s_\theta \\
s_\theta \left(c_{12}c_{23}s_{13} - s_{12}s_{23}\right) & s_\theta \left(c_{23}s_{12}s_{13} + c_{12}s_{23}\right) & -s_\theta c_{13}s_{23} & c_\theta \\
\end{pmatrix}
\]

\(U_{e3}: \) Daya Bay, unaffected by \(\theta_T\) given by \(\theta_{13}\)
\(U_{\mu3}: \) K2K and MINOS, unaffected by \(\theta_T\) given by \(\theta_{23}\)
\(U_{e2}: \) Kamland, unaffected by \(\theta_T\) given by \(\theta_{12}\)

Solar neutrino flux sensitive to \(\theta_T, \theta_{12}: ^8B\) flux theory limits
\(\sin \theta_T < 0.6\)
Neutrino Spectrum

Large mass splitting: tiny oscillation length

\(m_4 \sim 10 - 100 \text{ MeV} \)

\(m_{1,2,3} \lesssim 0.1 \text{ eV} \)
Sterile Neutrinos
Generic

Models avoiding neutrino portal/sterile neutrino via, e.g. coupling to Lepton number highly constrained by electron-DM scattering

Work in progress w/ R. Essig & Y. Zhong
Aside: Sterile Neutrinos

Generic

Can also charge sterile neutrino & DM w.r.t. new U(1)

Shoemaker
Cherry, Friedland, & Shoemaker
Dasgupta & Kopp
Boehm+

...

Leads to DM/neutrino self-interactions

Only occur at loop level in model with charged mediator
Neutrino Oscillations

Light neutrinos are a linear combination of
\[\nu_e, \nu_\mu, c_\theta \nu_\tau - s_\theta N_2 \]
\[\nu_\tau N \]

\[\nu_\mu \rightarrow \nu_\tau \] changed due to matter effects

Equivalent to NSI:
\[\epsilon_{ij} = \frac{U_{i4} U_{j4}}{6} \]

Super-K & IceCube: \(\sin \theta_\tau < 0.4 \)
Parameter Range

\[g = y_2 |U_{\tau 4}| \]

Fixed \[y_2 = 1 \]

As advertised, 10s of MeV
Supernovae

Neutrinos produced in SN at T~30 MeV

Initial neutronization burst of ν_e

DM light enough to be produced but doesn’t contribute to cooling, thermal dist. with neutrinos to large radii

Neutrinos free stream when density is low, T~5 MeV: DM production suppressed, similar to strong ν self-interactions

Fayet, Hooper, & Sigl, hep-ph/0602169 find $m_\chi > 10$ MeV

Mangano et al., hep-ph/0606190 & Boehm et al., 1303.6270:

$$\sigma_{\bar{\nu}_i\chi} \lesssim 10^{-25} \text{ cm}^2 \left(\frac{m_\chi}{\text{MeV}}\right)$$
Neutrinos from SN

MeV energy neutrinos from SN scatter on DM

Resonance at $E_{\nu} = \frac{m_\phi^2 - m_\chi^2}{2m_\chi}$ can be in the right range

Electron neutrino fraction (SN1987A)
$m_\chi=10$ MeV, $m_\phi=20$ MeV, $l=51$ Kpc
DSNB

Same process as for nearby SN

Potentially visible at Hyper-K
Implications for IceCube

Cherry, Friedland, & Shoemaker
Implications for IceCube

Cherry, Friedland, & Shoemaker
Neutrinos from SN: Core vs. Cusp?

Feedback from baryons could be a possible sol’n for cuspy halo problem

\[10^{51} \text{ ergs} \times \epsilon_{\text{SN}} \]

transferred from SN to DM

\[\epsilon_{\text{SN}} \sim 0.1 - 0.4 \]

an interesting value

Pontzen & Governato, 1402.1764
Neutrinos from SN: Core vs. Cusp?

Feedback from baryons could be a possible sol’n for cuspy halo problem

10^{51} ergs $\times \epsilon_{SN}$ transferred from SN to DM

$\epsilon_{SN} \approx 0.1 - 0.4$ an interesting value

10^{53} ergs $\times \epsilon_{\nu\chi}$

$\epsilon_{\nu\chi} \approx \frac{1}{2} \times \frac{1}{3} \times \frac{1}{E_{\nu}} \int dE_{\nu}' (E_{\nu} - E_{\nu}') \frac{d\sigma_{\nu\chi}}{dE_{\nu}'} \times \int dl n_{\chi}$

Find $\epsilon_{\nu\chi} \approx 10^{-3}$ for $M_{cut} = 10^9 M_{\odot}$

compare against

$[\rho(r) = \frac{1}{r} \rightarrow \text{const.}]$

$\Delta W \approx \frac{1}{30} \frac{GM_{\text{enc}}^2}{r_0} \approx 3 \times 10^{54}$ ergs $\left(\frac{M_{\text{enc}}}{10^9 M_{\odot}} \right)^2 \left(\frac{r_0}{\text{kpc}} \right)$

But only a small fraction of DM scattered...maybe including all stars?

(In progress w/ Nelson & Weiner)
Future tests

τ decays

$\tau \rightarrow \nu \pi \pi$, FlaviaNet 2010

$\theta_\tau = 0.7$

$m_4 = 300 \text{ MeV}$

$\tau \rightarrow K \pi$ decays

slightly low...

$|U_{us}|$ conservative, optimistic

$|U_{ud}|^2$

τ decays, FlaviaNet 2010
0.2254 ± 0.0013

K_2 decays, FlaviaNet 2010
0.2252 ± 0.0013

CKM unitarity
0.2255 ± 0.0010

$\tau \rightarrow K^+ / \tau \rightarrow K^-$, HFAG 2012
0.2229 ± 0.0021

$\tau \rightarrow K^-$, HFAG 2012
0.2214 ± 0.0022

$\tau \rightarrow s$ inclusive, HFAG 2012
0.2173 ± 0.0022

τ average, HFAG 2012
0.2202 ± 0.0015
Future tests

Super-K limit on U_{T4} is statistics limited

PINGU could provide factor of 1.5 improvement

LBNF/DUNE (Study by A. E. Nelson & K. Hicks in progress)
Wrap up

• Possible sign of interesting departure from standard DM paradigm at small scales

• A large coupling of DM to neutrinos could help alleviate this

• New neutral lepton states (sterile neutrinos) fairly general requirement

• In a simple model heavy neutrino is mostly sterile with a small(ish) ν_τ admixture

• Implications for τ decays, SN observations, long-baseline neutrino exp’ts, ...
Wrap up

New physics is a gamble...

but the payoff is immense!