Status of the KArlsruhe TRItium Neutrino Experiment

Kathrin Valerius
for the KATRIN collaboration

PPC 2015, Deadwood, South Dakota

- Overview: neutrino masses & direct probes
- KATRIN: measurement principle and set-up
- Commissioning measurements & outlook
Neutrino masses: overview

Wealth of \(\nu \) oscillation data:

- Neutrino mixing & \(m(\nu_i) \neq 0 \) established
- Oscillation experiments: tiny mass splittings
 \[\Delta m_{\text{atm}}^2 = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \text{ eV}^2 \]
 \[\Delta m_{\text{sol}}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2 \]
- Which mass ordering (normal, inverted)?
- What is the absolute \(\nu \) mass scale?

So far: only **upper** (< 2 eV) and **lower bounds** (>0.01 resp. >0.05 eV)
Complementary paths towards the ν mass scale

<table>
<thead>
<tr>
<th>Tool</th>
<th>Cosmology CMB+LSS+...</th>
<th>Neutrinoless double β-decay</th>
<th>β-decay endpoint and EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable</td>
<td>$m_\Sigma = \sum_i m_i$</td>
<td>$m_{\beta\beta} =</td>
<td>\sum_i U_{ei}^2 m_i</td>
</tr>
<tr>
<td>Present upper limit</td>
<td>0.2 – 1 eV</td>
<td>0.2 – 0.4 eV</td>
<td>2 eV</td>
</tr>
<tr>
<td>Potential</td>
<td>20 – 50 meV</td>
<td>20 – 50 meV</td>
<td>200 meV</td>
</tr>
<tr>
<td>Method</td>
<td>Multi-parameter cosmological model</td>
<td>Majorana vs. Dirac; Cancellations possible; Nucl. matrix elements</td>
<td>Direct kinematic meas., No cancellations in incoherent sum</td>
</tr>
</tbody>
</table>

\rightarrow J. Hamann, IX

\rightarrow M. Lindner, VI

\rightarrow MAJORANA Dem., GERDA, EXO-200/nEXO, SNO+, KamLAND-Zen
Complementary paths towards the ν mass scale

<table>
<thead>
<tr>
<th>Tool</th>
<th>Cosmology</th>
<th>Neutrinoless double β-decay</th>
<th>β-decay endpoint and EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable</td>
<td>$m_\Sigma = \sum_i m_i$</td>
<td>$m_{\beta\beta} =</td>
<td>\sum_i U_{ei}^2 m_i</td>
</tr>
<tr>
<td>Present upper limit</td>
<td>0.2 – 1 eV</td>
<td>0.2 – 0.4 eV</td>
<td>2 eV</td>
</tr>
<tr>
<td>Potential</td>
<td>20 – 50 meV</td>
<td>20 – 50 meV</td>
<td>200 meV</td>
</tr>
<tr>
<td>Method</td>
<td>Multi-parameter cosmological model</td>
<td>Majorana vs. Dirac; Cancellations possible; Nucl. matrix elements</td>
<td>Direct kinematic meas., No cancellations in incoherent sum</td>
</tr>
</tbody>
</table>

→ J. Hamann, IX
→ M. Lindner, VI
→ this talk

→ MAJORANA Dem., GERDA, EXO-200/nEXO, SNO+, KamLAND-Zen
Direct neutrino mass measurements

Imprint of m_ν on **endpoint region** of β spectrum (similar for EC):

$$\frac{d\Gamma}{dE} = C \cdot F(Z, E) \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m^2(\nu_e)}$$

$$m^2(\nu_e) = \sum |U_{ei}|^2 m_i^2$$

Key requirements

- Source isotope:
 - Large decay rate (short $T_{1/2}$)
 - Low spectral endpoint Q
- Instrument:
 - Excellent energy resolution
 - Very low background

-measured quantity:
 - effective mass square

-Imprint of m_ν on **endpoint region** of β spectrum (similar for EC):

-Region close to β end point

-Only 2×10^{-13} of all decays in last 1 eV

-$m(\nu_e) = 0 \text{ eV}$

-$m(\nu_e) = 1 \text{ eV}$
Direct neutrino mass measurements

Imprint of m_ν on endpoint region of β spectrum (similar for EC):

$$\frac{d\Gamma}{dE} = C \cdot F(Z, E) \cdot \rho \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m^2(\nu_e)}$$

$$m^2(\nu_e) = \sum |U_{ei}|^2 m_i^2$$

Key requirements

- Source isotope:
 - Large decay rate (short $T_{1/2}$)
 - Low spectral endpoint Q
- Instrument:
 - Excellent energy resolution
 - Very low background

Experimental options

<table>
<thead>
<tr>
<th></th>
<th>3H (β)</th>
<th>187Re (β)</th>
<th>163Ho (EC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q value</td>
<td>18.6 keV</td>
<td>2.5 keV</td>
<td>\sim2.5 keV</td>
</tr>
<tr>
<td>$T_{1/2}$</td>
<td>12.3 yr</td>
<td>41 Gyr</td>
<td>4.5 kyr</td>
</tr>
<tr>
<td>technique</td>
<td>spectrometer</td>
<td>cryogenic micro-calorimeter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source \neq det.</td>
<td>source within detector</td>
<td></td>
</tr>
<tr>
<td>present m(ν) sens.</td>
<td>< 2 eV Mainz, Troitsk \sim2004</td>
<td>< 15-30 eV Milan, Genoa \sim2004</td>
<td>< 225 eV Livermore 1987</td>
</tr>
</tbody>
</table>
ν-mass measurement in tritium β-decay

3H β-decay

- Short $T_{1/2}$ of 12.3 y → high-intensity source
- Low endpoint of 18.6 keV → good rel. signal strength
- Gas, closed loop → high isotopic purity
- Computation of final states, radiative & recoil corrections

MAC-E filter technique

Magnetic Adiabatic Collimation with Electrostatic filter

Picard et al., NIM B63 (1992) 345

- Isotropic emission, strong B_s
- Energy filtering, weak B_{min}
- Energy resolution:
 \[
 \frac{\Delta E}{E} = \frac{B_{min}}{B_{max}} = \frac{1}{20000} \quad \text{(at KATRIN)}
 \]

\[\mu = \frac{E_{\perp}}{B} = \text{const.}\]
KATRIN: overview

Sensitivity on $m(v_e)$: 2 eV \rightarrow 200 meV

Predecessors:
Mainz/Troitsk experiments \rightarrow KATRIN

- Statistics (source luminosity) $\times 100$
- Systematics $\div 100$
- Scaled up linear dimensions (at roughly same background level)

~ 70 m

K. Valerius | Status of the KATRIN Experiment | PPC 2015
KATRIN: main components

Source & transport section
- Windowless gaseous tritium source
 - Intensity (10^{11} s$^{-1}$)
 - Stability (10^{-3} h$^{-1}$)
 - Isotopic purity (> 95%)
- Tritium retention factor (> 10^{14})
- Adiabatic transport of electrons

Spectrometer & detector section
- Spectrometer UHV ($p < 10^{-11}$ mbar)
- Energy resolution (<1 eV at 18.6 keV)
- High voltage stability (few ppm/month)
- Low background rate (10 mcps)
- High detection efficiency (mcps to kcps)
KATRIN: main components

WGTS demonstrator: $\Delta T/T \sim 10^{-4}$

SDS2: HV post-regulation: $\Delta U/U \sim 1$ ppm

Graph:
- **Y-axis:** temperature T_{eff} [K]
- **X-axis:** time [s]
- **Legend:**
 - Voltage
 - 1-sigma
 - 1 ppm

Graph Details:
- $\sigma = 16$ mV
- S. Grohmann et al., Cryogenics 55–56 (2013) 5
- M. Erhardt et al. (in prep.)

K. Valerius | Status of the KATRIN Experiment | PPC 2015
Windowless gaseous tritium source

- Closed-loop processing of 10^{16} Bq/day
- 10^{-3} relative stability of T_2 column density:
 → injection & pumping rate, isotopic purity, temperature stability & homogeneity

S. Grohmann et al., Cryogenics 55–56 (2013) 5

WGTS assembly, delivery to KIT 08/2015

August 2014
Transport and pumping sections

Differential pumping section (DPS)
- Turbomolecular pumps
- Tritium retention $\sim 10^5$
- Magnetic guiding of electrons

Cryogenic pumping section (CPS)
- Cryo-sorption on 3-4 K argon frost
- Tritium retention $> 10^7$
- Magnetic guiding of electrons

DPS site acceptance tests at KIT almost completed

CPS being prepared for transport to KIT
Spectrometer and detector section

Installation of wire electrodes (2007-2012)

Large Helmholtz coil system (2011)

Detector tests (until spring 2013)

- 148 pix. Si-PIN diode

Since mid-2013: commissioning of main spectrometer & detector
Commissioning measurements

Set-up for spectrometer & detector commissioning

- Magnetic fields
 - s.c. magnets
 - Field-shaping air coil systems

- Precision high voltage vessel + wire electrode at separate HV

- Electron gun
 - Well-defined, sharp energy and angle

- Vacuum system
 - TMPs
 - 3 x 1 km NEG strips, $10^6 \ell/s$ (+ LN$_2$-cooled baffles)

- 148-pix detector
 - Spatial & timing info
Commissioning measurements

Characterisation of spectrometer transmission using precision electron source: mono-energetic, point-like, angular selective

Transmission characteristics of main spec. as expected (limited by e-gun systematics ...)

Radial dependence of retardation potential as expected (precision mapping by e-gun)

Energy spread $\sigma \sim 200$ meV at 18.6 keV
Commissioning measurements

Characterisation of backgrounds

- Very efficient magnetic & electrostatic shielding, but only for charged particles (e- and H+)
- Neutral, unstable atoms (219, 220Rn, H*) can penetrate into inner flux tube
 → further measures required, e.g. passive shielding against Rn-induced secondaries

\[
477 \pm 3 \text{ mcps background level achieved}
\]
KATRIN: ν-mass sensitivity

Shape analysis of β spectrum (no external endpoint information)

4-parameter fit:

- m^2_ν
 eff. neutrino mass square
- E_0
 spectral endpoint
- A_{sig}
 signal rate
- R_{Bg}
 background rate

$\sigma_{\text{stat}}(m^2_\nu) \leq 0.018 \text{ eV}^2$

$\sigma_{\text{syst}}(m^2_\nu) \leq 0.017 \text{ eV}^2$ – total systematic uncertainty budget

- Source-related (final states, energy loss, column density, plasma potential, ...)
- Other (HV fluctuations, transmission function, non-Poissonian backgrounds, ...)

![Graph showing integrated rate vs. retarding potential with labels](image)
KATRIN: ν-mass sensitivity

![Plot showing sensitivity to neutrino mass as a function of full beam time.](image)

Reference neutrino mass sensitivity
- Measured quantity: $m^2(\nu_e)$
- After 3 yrs of data (5 calendar yrs): balance of *statistics* and *systematics*

$\sigma_{\text{stat}}(m^2_\nu) \leq 0.018 \text{ eV}^2$

$\sigma_{\text{syst}}(m^2_\nu) \leq 0.017 \text{ eV}^2$ – total systematic uncertainty budget
- Source-related (final states, energy loss, column density, plasma potential, ...)
- Other (HV fluctuations, transmission function, non-Poissonian backgrounds, ...)

200 meV: 90% CL
350 meV: 5\(\sigma\)
KATRIN: ν-mass sensitivity ... and more:

Explore physics potential

- **close to the spectral endpoint E_0:**
 - RH currents
 - Bonn et al. (2011)
 - Violation of Lorentz symmetry
 - e.g. Diaz, Kostelecky & Lehnert (2013)

Constraining local CvB overdensities
- e.g. Kaboth & Formaggio (2010), Fässler et al. (2013)

- **and further away from E_0:**
 - search for keV-scale sterile ν as WDM candidates
 - S. Mertens et al. (2015)

Capture of relic ν on β-instable nuclei

Search for eV-scale sterile ν
- $\sim 1 \text{ eV}^2$
- Non-standard operation, requires novel concepts

Standard operation mode for KATRIN
Search for eV-scale sterile neutrinos

Shape modification below E_0 by active $(m_a)^2$ and sterile $(m_s)^2$ neutrinos:

$$\frac{d\Gamma}{dE} = \cos^2\theta_s \frac{d\Gamma}{dE} (m_a^2) + \sin^2\theta_s \frac{d\Gamma}{dE} (m_s^2)$$

\rightarrow additional kink in β spectrum at $E = E_0 - m_s$

$\sim 1 \text{ eV}^2$

\rightarrow P. Machado, Sterile neutrinos
Search for eV-scale sterile neutrinos: Mainz data

68%, 90%, 95% C.L. Mainz exclusion region

EXO-200 data

solar + KamLAND osc. analysis

95% and 90% C.L. favoured regions, reactor ν anomaly

Search for eV-scale sterile neutrinos: KATRIN

- “Reactor antineutrino anomaly”: \(|\Delta m^2_s| > 1.5 \text{ eV}^2\), \(\sin^2(2\theta_s) = 0.14 \pm 0.08\) (95% CL)
- Favoured parameter space can be probed by KATRIN:

See also
Formaggio & Barrett, PLB 706 (2011) 68;
Sejersen Riis & Hannestad, JCAP 02 (2011) 011;
Esmaili & Peres, arXiv:1203.2632

Reactor anomaly (90% CL)
G. Mention et al., PRD 83 (2011) 073006

KATRIN exclusion
(3 net years, 90% CL)
M. Kleesiek, PhD thesis, 2014

See also
Formaggio & Barrett, PLB 706 (2011) 68;
Sejersen Riis & Hannestad, JCAP 02 (2011) 011;
Esmaili & Peres, arXiv:1203.2632
Status & Outlook

- β decay offers model-independent, **direct** access to neutrino mass scale
- KATRIN sensitivity on $m(\nu_e)$: **200 meV** (90% CL, 5 cal. yrs)
 → ultimate MAC-E type experiment using molecular tritium
 → will exhaust degenerate neutrino mass regime

Status of KATRIN hardware & system integration

- Tritium-bearing components currently under construction; delivery & system integration in 2015
- Spectrometer & detector section successfully completed commissioning phases I and II
- First runs with entire KATRIN beam line in 2016