Nonthermal CP violation in soft leptogenesis

Chee Sheng Fong

Universidade de São Paulo
São Paulo, Brasil

June 30, 2015
IX Particle Physics and Cosmology Workshop (PPC2015)
Deadwood, South Dakota, USA

Outline

Motivations

Soft leptogenesis (CP violation)

Phenomenological constraints

Summary
Outline

Motivations

Soft leptogenesis (CP violation)

Phenomenological constraints

Summary
We live in a matter(baryon)-dominated Universe

If we have the same amount of baryons and antibaryons in the early Universe, we will be left with \(n_B/s \sim n_{\bar{B}}/s \sim 10^{-19} \) when their annihilations freeze out. However BBN and CMB measurements *consistently* point to \((n_B - n_{\bar{B}})/s \sim n_B/s \sim 10^{-10} \).
Neutrinos are massive
In the standard model, neutrinos are massless but they are not

(Talks by Everett, Coloma, Volkas)

Simplest solution is to introduce right-handed neutrinos \(N_i \)

\[\implies \text{two possibilities:} \]

(i) \(-\mathcal{L} \supset (Y_{\alpha i})(\bar{\ell}_\alpha H)N_i + \frac{1}{2}M_i\bar{N}_i^cN_i + \text{H.c.}\)

(ii) \(-\mathcal{L} \supset (Y_{\alpha i})(\bar{\ell}_\alpha H)N_i + \text{H.c.}\) due to some symmetry e.g. lepton number

Virtues of (i) a.k.a. type-I seesaw

- Justify the lightness of neutrino masses: \(m_\nu \sim Y^2 \langle H \rangle^2 / M \)
- Baryogenesis through leptogenesis [Fukugita, Yanagida (1986)] (di Bari’s talk): \(M_1 \gtrsim 10^9 \text{ GeV} \) (true only for hierarchical spectrum \(M_1 \ll M_2 \ll M_3 \))

 [Davidson, Ibarra (2002)]

Neutrinos are massive & we still love SUSY

Some well-known virtues of supersymmetry (Tata’s talk)

- Gauge coupling unification
- Hierarchy between weak and GUT scales is stabilized
- With R-parity, we have dark matter candidates

So we supersymmetrize type-I seesaw

\[W \supset \left(Y \right)_{\alpha i} (\hat{\ell}_{\alpha} \hat{H}_u) \hat{N}_i^c + \frac{1}{2} M_i \hat{N}_i^c \hat{N}_i^c \]

similar feature to the SM leptogenesis \(\epsilon \propto Y^2 \): \(M_1 \gtrsim 10^9 \text{ GeV} \)
Neutrinos are massive & we still love SUSY

Some well-known virtues of supersymmetry (Tata’s talk)

- Gauge coupling unification
- Hierarchy between weak and GUT scales is stabilized
- With R-parity, we have dark matter candidates

So we supersymmetrize type-I seesaw

\[W \supset (Y)_{\alpha i}(\ell_{\alpha} \hat{H}_u)\hat{N}^c_i + \frac{1}{2} M_i \hat{N}^c_i \hat{N}^c_i \]

similar feature to the SM leptogenesis \[\epsilon \propto Y^2 : M_1 \gtrsim 10^9 \text{ GeV} \]

\[-\mathcal{L}_{\text{soft}} \supset \tilde{m}_{ij}^2 \tilde{N}_i^* \tilde{N}_j + \left[(A)_{\alpha i} (\ell_{\alpha} H_u)\hat{N}^*_i + \frac{1}{2} B M_i \hat{N}_i \hat{N}_i + \text{H.c.} \right] \]

- \((A)_{\alpha i} \rightarrow \) new sources of \(CP \) violation
- \(B \rightarrow \) mass splitting of sneutrinos within the same generation

New possibility: soft leptogenesis [D’Ambrosio et al. (2003); Grossman et al. (2003)]

\[\epsilon \propto A/M : \text{cannot work for } M_1 \gtrsim 10^9 \text{ GeV could work for } M_1 \lesssim 10^9 \text{ GeV} \]

\[\rightarrow \text{eases tension of gravitino overproduction } T_{RH} \lesssim 10^{6-9} \text{ GeV} \]
Outline

Motivations

Soft leptogenesis (CP violation)

Phenomenological constraints

Summary
Soft leptogenesis

Consider the lightest generation $i = 1$ and drop the index. Physics ‘decouples’ from heavier generations $i = 2, 3$.

Due to the B term, \tilde{N} and \tilde{N}^* mix to form mass eigenstates:

\[
\tilde{N}_+ = \frac{1}{\sqrt{2}}(\tilde{N} + \tilde{N}^*)
\]
\[
\tilde{N}_- = -\frac{i}{\sqrt{2}}(\tilde{N} - \tilde{N}^*)
\]

with $M_\pm^2 = M^2 + \tilde{m}^2 \pm BM \implies \text{small mass splitting}$
Soft leptogenesis

Consider the lightest generation $i = 1$ and drop the index. Physics ‘decouples’ from heavier generations $i = 2, 3$.

Due to the B term, \tilde{N} and \tilde{N}^* mix to form mass eigenstates:

$$\tilde{N}_+ = \frac{1}{\sqrt{2}}(\tilde{N} + \tilde{N}^*)$$

$$\tilde{N}_- = -\frac{i}{\sqrt{2}}(\tilde{N} - \tilde{N}^*)$$

with $M^2_{\pm} = M^2 + \tilde{m}^2 \pm BM \implies \text{small mass splitting}$

For soft leptogenesis to proceed, the decays $\tilde{N}_\pm \rightarrow \tilde{\ell}_\alpha H_u$ (scalar) and $\tilde{N}_\pm \rightarrow \ell_\alpha \tilde{H}_u$ (fermionic) need to fulfill 3 well-known Sakharov’s conditions [Sakharov (1967)]:

(1) lepton number violation

(2) C- and CP- violation (our focus today)

(3) the decays are of the order of/slower than the expansion rate of the Universe
Soft leptogenesis: \textit{CP} violation

From interference between tree and one-loop diagrams ($i = \pm$)

\[\tilde{N}_i \xrightarrow{\quad H^b_u \quad} \tilde{N}_j \quad \text{and} \quad \tilde{N}_i \xrightarrow{\quad \tilde{H}^c_{u} \quad} \tilde{N}_j\]

[D’Ambrosio et al. (2003); Grossman et al. (2003)]

We should check if $\epsilon_{\text{scalar}} + \epsilon_{\text{fermion}} = 0$? (see however [CSF, Gonzalez-Garcia, and Nardi (2011)] when $\mu_{\text{scalar}} \neq \mu_{\text{fermion}}$)

[Grossman et al. (2004)]
Soft leptogenesis: \textit{CP} violation

From interference between tree and one-loop diagrams ($i = \pm$)

\[\tilde{N}_i \overset{H_u^b}{\longrightarrow} + \tilde{N}_j \]
\[\tilde{N}_i \overset{\tilde{\ell}_a}{\longrightarrow} \tilde{N}_j \]
\[\tilde{N}_i \overset{\tilde{H}_{c,b}^c}{\longrightarrow} + \tilde{N}_j \]
\[\tilde{N}_i \overset{\ell_a}{\longrightarrow} \tilde{N}_j \]

[\text{D'Ambrosio et al. (2003); Grossman et al. (2003)}] [\text{Grossman et al. (2004)}]

\textbf{We should check if} $\epsilon_{\text{scalar}} + \epsilon_{\text{fermion}} = 0$?

(see however [CSF, Gonzalez-Garcia, and Nardi (2011)] when $\mu_{\text{scalar}} \neq \mu_{\text{fermion}}$)
Soft leptogenesis: CP violation from gaugino vertex

$\tilde{N}_i \rightarrow H_u \tilde{\lambda}_{1,2} \tilde{\ell} \ell^a \ell_{\alpha}$

$\tilde{H}^{c,b}_u \rightarrow H_u \tilde{\lambda}_{1,2} \ell \tilde{\ell}^a \ell_{\alpha}$

$\tilde{N}_i \rightarrow H_u \tilde{\lambda}_{1,2} \tilde{\ell} \ell^a \ell_{\alpha}$

$\tilde{H}^{c}_u \rightarrow H_u \tilde{\lambda}_{1,2} \ell \tilde{\ell}^a \ell_{\alpha}$

[Note: The diagram illustrates the process of leptogenesis through the exchange of gaugino vertices, leading to the production of neutrinos (\tilde{N}_i) and the violation of CP symmetry.]

- [Grossman et al. (2004)]: $\epsilon^{T=0}_{\text{scalar}} + \epsilon^{T=0}_{\text{fermion}} \neq 0$
Soft leptogenesis: CP violation from gaugino vertex

$\tilde{N}_i \rightarrow H_u \tilde{\lambda}_{1,2} \ell \ell^a_{\alpha} \tilde{N}_i \rightarrow H_u \tilde{\lambda}_{1,2} \ell \ell^a_{\alpha}$

- [Grossman et al. (2004)]: $\epsilon^{T=0}_{\text{scalar}} + \epsilon^{T=0}_{\text{fermion}} \neq 0$
- [CSF, Gonzalez-Garcia (2009)]: $\epsilon^{T=0}_{\text{scalar}} + \epsilon^{T=0}_{\text{fermion}} = 0$, $\epsilon^{T\neq0}_{\text{scalar}} + \epsilon^{T\neq0}_{\text{fermion}} \neq 0$
Soft leptogenesis: \textit{CP} violation from gaugino vertex

\[\tilde{N}_i \xrightarrow{H_u} \tilde{\lambda}_{1,2} \xrightarrow{\tilde{\ell}} \tilde{\ell}_a \]

\[\tilde{N}_i \xrightarrow{\tilde{\lambda}_{1,2}} \tilde{\ell}_a \]

\[\epsilon^{T=0}_{\text{scalar}} + \epsilon^{T=0}_{\text{fermion}} \neq 0 \]

\[\epsilon^{T=0}_{\text{scalar}} + \epsilon^{T=0}_{\text{fermion}} = 0, \quad \epsilon^{T \neq 0}_{\text{scalar}} + \epsilon^{T \neq 0}_{\text{fermion}} \neq 0 \]

\[\epsilon^{T=0}_{\text{scalar}} + \epsilon^{T=0}_{\text{fermion}} = \epsilon^{T \neq 0}_{\text{scalar}} + \epsilon^{T \neq 0}_{\text{fermion}} = 0 \]

It could actually still work in a narrow window \(10^8 \text{ GeV} \lesssim T \lesssim 10^9 \text{ GeV} \) with \(m_{\tilde{\lambda}_{1,2}} \sim \text{TeV} \) when \(\mu_{\text{scalar}} \neq \mu_{\text{fermion}} \) [CSF, Gonzalez-Garcia, and Nardi (2011)] but we won’t consider it further.
Soft leptogenesis: CP violation

- [Adhikari, Rangarajan (2002)] showed that at $T = 0$, if the baryon/lepton number is conserved to the ‘right’ of the cut, the total CP asymmetry vanishes.
Soft leptogenesis: CP violation

- [Adhikari, Rangarajan (2002)] showed that at $T = 0$, if the baryon/lepton number is conserved to the ‘right’ of the cut, the total CP asymmetry vanishes.
- Apparently, it also holds for $T \neq 0$ (work in progress).
Soft leptogenesis: \textit{CP} violation

- [Adhikari, Rangarajan (2002)] showed that at $T = 0$, if the baryon/lepton number is conserved to the ‘right’ of the cut, the \textbf{total} CP asymmetry vanishes.

- Apparently, it also holds for $T \neq 0$ (work in progress).

\[\tilde{N}_i \tilde{\lambda}_{1,2} \tilde{\ell} \tilde{\ell}_\alpha \tilde{H}_{u,c,b} \]

\[\tilde{N}_i \tilde{\lambda}_{1,2} \tilde{\ell} \tilde{\ell}_\alpha \tilde{H}_{u,c,b} \]

\[\tilde{N}_\pm \tilde{\ell}_\beta \tilde{N}_\mp \tilde{\ell}_\alpha \tilde{H}_u \]

\[\tilde{N}_\pm \tilde{\ell}_\beta \tilde{N}_\mp \tilde{\ell}_\alpha \tilde{H}_u \]
Soft leptogenesis: \(CP \) violation from mixing

\[
\epsilon_{\pm \alpha} = \frac{1}{4\pi G_{\pm}(T)} Y_\alpha^2 \sum_\beta Y_\beta \frac{\text{Im}(A_\beta)}{M} \frac{4BM}{4B^2 + \Gamma^2_\mp} [c_F(T) - c_B(T)] r_B(T)
\]

\[
+ \frac{1}{4\pi G_{\pm}(T)} \frac{|A_\alpha|^2}{M^2} \sum_\beta Y_\beta \frac{\text{Im}(A_\beta)}{M} \frac{4BM}{4B^2 + \Gamma^2_\mp} r_B(T) c_B(T)
\]

where

\[
G_{\pm}(T) \equiv \left[Y^2 + \sum_\alpha \left(\frac{|A_\alpha|^2}{M^2} \pm \frac{2Y_\alpha \text{Re}(A_\alpha)}{M} \right) \right] c_B(T) + Y^2 \left(1 + \frac{\tilde{M}^2}{M^2} \pm \frac{B}{M} \right) c_F(T),
\]

\[
\Gamma_{\pm} = \frac{M}{8\pi} G_{\pm} \quad \text{and thermal factors } c_F(T), c_B(T), r_B(T) \rightarrow 1 \text{ as } T \rightarrow 0.
\]

With \(A_\alpha = AY_\alpha \) (original papers), the ‘thermal’ (first) term always dominates and due to additional suppression by \(Y_\alpha \), \(B \ll M_{\text{SUSY}} \) is needed to resonantly enhance the CP violation.
Soft leptogenesis: \(CP \) violation from mixing

\[
\epsilon_{\pm\alpha} = \frac{1}{4\pi G_{\pm}(T)} Y_{\alpha}^2 \sum_{\beta} Y_{\beta} \frac{\text{Im}(A_{\beta})}{M} \frac{4BM}{4B^2 + \Gamma^2_{\mp}} [c_F(T) - c_B(T)] r_B(T)
\]

\[
+ \frac{1}{4\pi G_{\pm}(T)} \frac{|A_{\alpha}|^2}{M^2} \sum_{\beta} Y_{\beta} \frac{\text{Im}(A_{\beta})}{M} \frac{4BM}{4B^2 + \Gamma^2_{\mp}} r_B(T) c_B(T)
\]

where

\[
G_{\pm}(T) \equiv \left[Y^2 + \sum_{\alpha} \left(\frac{|A_{\alpha}|^2}{M^2} \pm \frac{2Y_{\alpha}\text{Re}(A_{\alpha})}{M} \right) c_B(T) + Y^2 \left(1 + \frac{\tilde{M}^2}{M^2} \pm \frac{B}{M} \right) c_F(T), \right]
\]

\[
\Gamma_{\pm} = \frac{M}{8\pi} G_{\pm} \text{ and thermal factors } c_F(T), c_B(T), r_B(T) \to 1 \text{ as } T \to 0.
\]

With \(A_{\alpha} = AY_{\alpha} \) (original papers), the ‘thermal’ (first) term always dominates and due to additional suppression by \(Y_{\alpha}, B \ll M_{\text{SUSY}} \) is needed to resonantly enhance the CP violation.

In the case with \(A_{\alpha} \sim M_{\text{SUSY}} \) [CSF et al. (2010)], we have new possibilities:

- \(|A_{\alpha}|/M \ll Y_{\alpha}: \) ‘thermal’ (first) term dominates
- \(|A_{\alpha}|/M \gg Y_{\alpha}: \) ‘nonthermal’ (second) term dominates
- \(|A_{\alpha}|/M \sim Y_{\alpha}: \) both terms contributes

No resonant enhancement required: \(B \sim M_{\text{SUSY}} \)
Soft leptogenesis: CP violation from mixing

$B=1$ TeV, $\arg(A_\alpha)=-\pi/2$, $\tan\beta=10$

\[Y_{\Delta B}(\infty) \equiv \frac{n_B - n_{\bar{B}}}{s}|_{\text{current}}, \quad K \equiv \frac{\Gamma_{\pm}}{H(T=M)} \]

with $H(T)$ the Hubble expansion rate and $M = 5 \times 10^7$ GeV.

- **Red dotted**: $|A_\alpha|/M \ll Y_\alpha$
- **Blue dashed**: $|A_\alpha|/M \gg Y_\alpha$
- **Purple solid**: $|A_\alpha|/M \sim Y_\alpha$

On the left of blue dashed or purple solid vertical lines, $|A_\alpha| < 5$ TeV.
Outline

Motivations

Soft leptogenesis (CP violation)

Phenomenological constraints

Summary
Soft leptogenesis: Phenomenological constraints

Constraints from electric dipole moment (EDM) of charged leptons and for charged lepton flavor violating (CLFV) processes for $A_\alpha = AY_\alpha$ scenario are weak [Kashti (2005)].

How about for generic $A_\alpha \sim M_{SUSY}$?
Soft leptogenesis: Phenomenological constraints

Constraints from electric dipole moment (EDM) of charged leptons and for charged lepton flavor violating (CLFV) processes for $A_\alpha = A Y_\alpha$ scenario are weak [Kashti (2005)].

How about for generic $A_\alpha \sim M_{\text{SUSY}}$?

- EDM of electron

\[|d_e| \approx \frac{e m_e \tan \beta}{16\pi M_{\text{SUSY}}} \left| \frac{Y_\alpha}{M^2} \right| (|A_\alpha| + B Y_\alpha) \]

Out-of-equilibrium decay condition $\Gamma_\pm \lesssim H(T = M)$ gives

\[|d_e| \lesssim 5 \times 10^{-38} \left(\frac{\tan \beta}{10} \right) \left(\frac{10^7 \text{ GeV}}{M} \right)^{3/2} \left(\frac{1 \text{ TeV}}{M_{\text{SUSY}}} \right) e\text{ cm} \]

Current experimental bound: $|d_e|_{\text{exp}} < 8.7 \times 10^{-29} e\text{ cm}$ [Baron et al. (2014)]

For muon and tau ($m_e \rightarrow m_\mu,\tau$), experimental constraints much weaker:

$|d_\mu|_{\text{exp}} < 1.9 \times 10^{-19} e\text{ cm}$ [Bennett et al. (2009)]

$|d_\tau|_{\text{exp}} < 5.1 \times 10^{-17} e\text{ cm}$ [Inami et al. (2003)]
Soft leptogenesis: Phenomenological constraints

- **CLFV processes**

\[
(m^2_{\tilde{\ell}})_{\alpha\beta} \approx -\frac{1}{8\pi^2} A_{\alpha}^* A_{\beta} \ln \left(\frac{M_{\text{GUT}}}{M}\right), \quad \text{BR}(\ell_\alpha \to \ell_\beta \gamma) \approx \frac{\alpha^3}{G_F^2} \frac{|(m^2_{\tilde{\ell}})_{\alpha\beta}|^2}{M_{\text{SUSY}}^8} \tan^2 \beta
\]

with \(\text{BR}(\mu \to 3e) \sim 6.6 \times 10^{-3} \text{BR}(\mu \to e\gamma)\) and \(\mu - e\) conversion in \(^{27}\)\(^{13}\)Al nucleus \(R_{\mu e} \sim 2.5 \times 10^{-3} \text{BR}(\mu \to e\gamma)\)

MEG: \(\text{BR}(\mu \to e\gamma)_{\text{exp}} < 5.7 \times 10^{-13}\) [Adam et al. (2013)]

\[
|A_{\mu}^* A_e| \lesssim 5 \times 10^3 \text{ GeV}^2 \left(\frac{M_{\text{SUSY}}}{1 \text{ TeV}}\right)^4 \left(\frac{10}{\tan \beta}\right)
\]

BABAR: \(\text{BR}(\tau \to e\gamma)_{\text{exp}} < 3.3 \times 10^{-8}, \text{BR}(\tau \to \mu\gamma)_{\text{exp}} < 4.4 \times 10^{-8}\) [Aubert et al. (2010)]

\[
|A_\tau^* A_e| \approx |A_\tau^* A_\mu| \lesssim 1 \times 10^6 \text{ GeV}^2 \left(\frac{M_{\text{SUSY}}}{1 \text{ TeV}}\right)^4 \left(\frac{10}{\tan \beta}\right)
\]

Projected sensitivities: \(\text{BR}(\mu \to 3e) \sim 10^{-15-16}\) [Mu3e, Blondel et al. (2013)] and \(R_{\mu e} \sim 10^{-17}\) [Mu2e, Abrams et al. (2012)]

Close to sensitivities of present and future experiments!
Outline

Motivations

Soft leptogenesis (CP violation)

Phenomenological constraints

Summary
Summary

Consider soft leptogenesis with generic $A_\alpha \sim M_{\text{SUSY}}$

- Works for $M \lesssim 10^9$ GeV, reduce/avoid tension with gravitino overproduction
- ‘Nonthermal’ CP violation is possible \implies enhanced CP violation
- No extra suppression from Y_α \implies enhanced CP violation
- No resonant enhancement required, allows natural $B \sim M_{\text{SUSY}}$
- Contributions to EDM of electron negligible
- Contributions to charged LFV interactions close to sensitivities of present and future experiments

Thank you for your attention!
Consider soft leptogenesis with generic $A_\alpha \sim M_{\text{SUSY}}$

- Works for $M \lesssim 10^9$ GeV, reduce/avoid tension with gravitino overproduction
- ‘Nonthermal’ CP violation is possible \implies enhanced CP violation
- No extra suppression from Y_α \implies enhanced CP violation
- No resonant enhancement required, allows natural $B \sim M_{\text{SUSY}}$
- Contributions to EDM of electron negligible
- Contributions to charged LFV interactions close to sensitivities of present and future experiments

Thank you for your attention!
Soft leptogenesis: CP violation

There are 3 physical CP phases: \(\Phi_\alpha \equiv \text{arg}(A_\alpha Y^*_\alpha B^*) \rightarrow \) can be assigned to \(A_\alpha \).

\[
\varepsilon^{S,V}_{\pm \alpha} \equiv \frac{\gamma(\bar{N}_\pm \rightarrow a_\alpha) - \gamma(\bar{N}_\pm \rightarrow \bar{a}_\alpha)}{\sum_{a_\beta;\beta} \left[\gamma(\bar{N}_\pm \rightarrow a_\beta) + \gamma(\bar{N}_\pm \rightarrow \bar{a}_\beta) \right]}, \quad a_\alpha = \{ \ell_\alpha \tilde{H}_u, \tilde{\ell}_\alpha H_u \}.
\]
(extra) Soft leptogenesis: CP violation

There are 3 physical CP phases: $\Phi_\alpha \equiv \arg(A_\alpha Y_\alpha^{*}B^{*}) \rightarrow$ can be assigned to A_α.

\[\epsilon^{S,V}_{\pm\alpha} \equiv \frac{\gamma(\tilde{N}_\pm \rightarrow a_\alpha) - \gamma(\tilde{N}_\pm \rightarrow a_{\overline{\alpha}})}{\sum_{a_\beta;\beta} \left[\gamma(\tilde{N}_\pm \rightarrow a_\beta) + \gamma(\tilde{N}_\pm \rightarrow \overline{a_\beta}) \right]}, \quad a_\alpha = \{\ell_\alpha H_u, \tilde{\ell}_\alpha H_u\} \]

\[\sum_{\alpha} \left[\epsilon^{S,(a)}_{\pm\alpha} + \epsilon^{S,(b)}_{\pm\alpha} + \epsilon^{S,(c)}_{\pm\alpha} \right] = 0 \]
(extra) Soft leptogenesis: \(CP\) violation

There are 3 physical \(CP\) phases: \(\Phi_\alpha \equiv \text{arg}(A_\alpha Y_\alpha^* B^*) \rightarrow \) can be assigned to \(A_\alpha\).

\[\epsilon_{s,v}^{\pm,\alpha} \equiv \frac{\gamma(\tilde{N}_\pm \rightarrow a_\alpha) - \gamma(\tilde{N}_\pm \rightarrow \bar{a}_\alpha)}{\sum_{a_\beta;\beta} \left[\gamma(\tilde{N}_\pm \rightarrow a_\beta) + \gamma(\tilde{N}_\pm \rightarrow \bar{a}_\beta) \right]}, \quad a_\alpha = \{\ell_\alpha \tilde{H}_u, \tilde{\ell}_\alpha H_u\}\]

\[\sum_\alpha \left[\epsilon_{s,(a)}^{\pm,\alpha} + \epsilon_{s,(b)}^{\pm,\alpha} + \epsilon_{s,(c)}^{\pm,\alpha} \right] = 0\]

\[\text{Enhancement from small mass splitting: } \epsilon_{s}^{\pm,\alpha} \propto \frac{M}{B} \gg \epsilon_{v}^{\pm,\alpha}\]